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Overview
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Future Work
‣ Induce word embeddings on in-domain data sets.

Discussion
‣ Extra features improved results on experiments with predicted 

POS tag data sets, but not with gold POS tag data sets.

Unlabeled Accuracy Relative to Baseline
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Brown Clustering Collobert & Weston Embedding

Dependency Parsing of Web Text

‣ Brown clustering features outperforms word embedding features. ‣ Try different ways to construct features.

‣ Data: Google Web TreeBank from SANCL2012, containing 5 domains (Answers, Emails, Newsgroups, Reviews, Weblogs).
‣ Graph-based parser with arc-factored model. 
‣ Extra word representations features are added on top of baseline features.

‣ Hierarchical clustering algorithm based on 
class-based bigram language model.

‣ It has been shown to improve accuracy. [Koo+ 2008]

• We used short bit-string prefixes of the hierarchy, 
combined with word forms or POS tags, as features. 

‣ Word Embedding: 
word represented in a dense 
low dimensional real value 
vector form, often induced 
from a neural language model. 

‣ We constructed features by 
clustering word embeddings:

• We used repeated bisection algorithm to cluster embeddings, then 
use acquired cluster IDs as features, similar to Brown clustering.

An example of Brown clustering

* Figure from Koo et al. 2008. “Simple Semi-supervised Dependency Parsing”.

‣ Parsing is difficult for unrestricted web text (Accuracy: WSJ 90% → Web 80%).  

‣ Word representation features obtained from large unlabeled data may combat data sparseness. 

‣ We observed that word clusters/embeddings help most in the case of predicted part-of-speech (POS) tags.

2D visualization of word embeddings

* Figure from Joseph Turian.

‣ It has been shown to improve 
accuracy of chunking & NER. 
[Turian+ 2010]

†  : Embeddings from [Turian+ 2010], trained on RCV1 (newswire) corpus.  1.3m sentences.
※ : Original embeddings induced using Google Web TreeBank’s each domain, trained for 1 month.  30k to 2m sentences.


